Entomología 2012 Vol. 11 tomo 2 mexicana

Editores

Armando Equihua Martínez

 Edith G. Estrada Venegas Jesús A. Acuña Soto M. Patricia Chaires Grijalva Guadalupe Durán Ramirez
CONSEJO DIRECTIVO 2011-2013
 Presidente

Edith G. Estrada Venegas
Primer Vicepresidente
Alfonso Pescador Rubio
Segundo Vicepresidente
Alberto Morales Moreno
Secretario
Esteban Jiménez Sánchez
Tesorero
M. Patricia Chaires Grijalva

COLEGIO DE POSTGRADUADOS

Director General
Dr. Jesús María Moncada de la Fuente
Secretario Académico
Dr. Raúl Gerardo Obando Rodríguez
Secretario Administrativo
Lic. Rolando Ramos Escobar

SOCIEDAD MEXICANA DE ENTOMOLOGÍA A. C.

Responsable EditorialSociedad Mexicana de Entomología A. C.Foto de la Portada: Hylesinus mexicams Wood (Coleoptera: Scolytinae)Autor: Dr. Armando Equihua MartínezDiseño de la Portada: M. en C. Jorge M. Valdez CarrascoPrimera edición 2012
© Editores
Armando Equihua Martínez
Edith G. Estrada Venegas
Jesús A. Acuña SotoM. Patricia Chaires Grijalva
Ma. Guadalupe Durán Ramírez
©Para la presente edición
Volumen 11
Tomo II
ISBN: 978-607-715-050-3
Miembro 306 CANIEM
COLEGIO DE POSTGRADUADOS
Km 36.5 Carretera México-Texcoco
Montecillo, Texcoco, CP. 56230
Estado de México
OD. R. Todos los derechos Reservados conforme a la ley
Impreso y Hecho en México
Printed and Made in Mexico

Entomología 2012
 Vol. 11 mexicana

 tomo 2ESTRUCTURA DE LA COMUNIDAD DE ARTRÓPODOS ASOCIADOS A DOS ESPECIES DE MUÉRDAGO ENANO (Arceuthobium spp.) PARÁSITOS DE Pinus hartwegii (LINDL.) EN EL PARQUE NACIONAL "ZOQUIAPAN Y ANEXAS".

Wan Folipe Chávez-Salcedo, Víctor López-Gómez, Zenón Cano-Santana, Blanca Mejía-Recamier y Mónica vajecro-Bolǎ̃os. Facultad de Ciencias, UNAM, México D. F. 04510 . haorl0@hotmail.com.
WStMEN. Los muérdagos enanos son plantas hemiparásitas causantes de severas infecciones en los bosques nexicanos. Con el travo de conocer los artrópodos pertenecientes a las comunidades asociadas a dos especies de muérdago (Arecuthobiumspp.) y panta hospedera (Pinus hartwegii), se realizaron colectas de forma bimestral durante un afio, con la finalidad de generar ncioion sobre las comunidades ahí presentes y detectar alguna especie como posible agente de control biológico. Se uos del 2% Los resultadgn a base para desarrollar futuras investigaciones sobre las intenentaron acobgicas en el sistema biológico del pino, el muérdago enano y los arttópodos.

Pultras clave: muérdago enano, Finus hartwegii, comunidad de attrópodos.
AESTRACT. Dwarf mistletoes are hemiparasitic plants that cause severe infections in Mexican forests. With the objective of lowing the arthropods that compose the communities associated with two species of dwarf mistletoe species (Arceuthobium mp^{2}) and their host piant (Pinus hartwegii), we performed bimonthly collections for a year; the goal was to generate information tour the arthropod communities present and to detect if it is possible to use any species as biological control agent. We sampled unged to adriduals, und Thysano groups according to the existing literature. The most abundant groups were Prostigmata, with 60% of warch on the ccologicptera, with 32%. The other groups represented less than 2%. The results provide a basis to develop future

Key words. dwaff mistletoes, arthropod community, Pinus hartwegii.

Introducción

Los muérdagos enanos (Arceuthobium spp.) son agentes causantes de infección en los bosques de pinos de México, ya que cuentan con una amplia distribución y se consideran como la segunda causa de daño al bosque de coniferas, después de los incendios (Hawksworth, 1983). Sin tmbargo, no se ha contemplado la relevancia que pueden tener al albergar una importante comunidad de artrópodos epífitos.

Los artrópodos terrestres mantienen una estrecha relación con las plantas con flores y de eta relación ha evolucionado una alta especificidad y relaciones obligadas entre los dos grupos (Davies, 1988). Todos los recursos y condiciones ofrecidos por las plantas son explotados por los attropodos: follaje, flores, frutos, semilias y estructuras tanto subterráneas como aéreas (Davies, 1988). Asimismo, las relaciones mutualistas entre insectos y otros organismos son comúnmente 1988) 1988).

Una comunidad está definida por el conjunto de poblaciones de diferentes especies Weractuando entre ellas, lo cual es un reflejc de la co-evolución que ha conformado un al amblaje de especies que comparten los recursos en un tiempo y espacio determinado (Ross et at, 1991; Showaiter, 2000).

Los muérciagos son plantas parásitas con flor del orden Santaiales. Son considerados arásitos, pues no dependen totaimente del hospedero yà que aún conservan su ruta
metabolica fotosintética funcional (Musselman y Press, 1995). Son parásitos aéreos ya que se establecen en las ramas del hospedero por medio de una estructura especializada llameded haustorio, la cual sustituye a la raiz, fijándose y extrayendo nutrientes del mismo. En México se ha estudiado previamente la relación parásita de los muérdagos enanos Arceuthobiuzm globosum subsp. grandicaule y A. vaginatum subsp. vaginatum y su hospedero Pinus hartwegii (Queijeiro, 2007). Los registros hacen referencia a altos niveles de infestacion en el Parque Nacional Zoquiapan; no obstante, no se ha contemplado a la comunidad de artrópodos relacionados a esteas especies de muérdago y su hospedero.

Los objetivos de este estudio son: conocer la composición, la abundancia, la riqueza y la diversidad de las comunidades de artrópodos asociadas a dos especies de muérdago enano (Arceuthobium spp.), así como a las acículas de Pinus hartwegii (Lindl.); comparar la estructura de la comunidad de artrópodos en temporada de lluvias y secas; y asignar un gremio alimenticio a los artrópodos descritos.

Materiales y Método

El Parque Nacional Zoquiapan y Anexas se localiza entre las coordenadas $19^{\circ} 12^{\prime} 30^{\prime \prime}$ y $19^{\circ} 20^{\prime} 00^{\prime \prime}$ latitud Norte y $98^{\circ} 42^{\prime} 30^{\prime \prime}$ y $98^{\circ} 30^{\prime} 00^{\prime \prime}$ longitud Oeste. Tiene un área de 19,418 ha; corresponde a los municipios de Ixtapaluca, Chalco y Tlaimanaico del Estado de México y al municipio de Tlahuapan del estado de Puebla. El clima dominante es templado subhúmedo con Huvias en verano. La precipitación media anual va de 800 mm hasta $1,200 \mathrm{~mm}$; la temperatura media anual va de $\operatorname{los} 6^{\circ} \mathrm{C}$ en las zonas de mayor altitud hasta los $14^{\circ} \mathrm{C}$ en las de menor altitud. (INEGI, 1981).

Se muestreó durante un año de forma bimestral (de marzo del 2010 a enero 2011) en cinco localidades del parque. La colecta de artrópodos se realizó cortando las acículas de los pinos y tejido de los muérdagos, colocándolos en contenedores de plástico. Los artrópodos se extrajeron utilizando la técnica de embudo de Berlese-Tullgren y se depositaron en frascos colectores con alcohol al 70% para su conservación. Posteriormente se revisaron al microscopio, se separaron, se realizaron preparaciones y se identificaron.

Resultados

Se colectaron 32059 ejemplares (tanto de estadios adultos como inmaduros) de los cuales se identificaron 51 morfoespecies pertenecientes a 15 órdenes. Las morfoespecies fueron asignadas a grupos funcionales según la literatura existente. Entre los grupos más abundantes están los órdenes Prostigmata, con 60% de los individuos, Thysanoptera con 32%, Homoptera y Oribatida con 1.7% cada uno, Psocoptera, con 1.3%, y Collembola con 1.1%. Otros órdenes con menos del 1 \% fueron Himenoptera, Hemiptera, Mesostigmata, Lepidoptera, Diptera, Aranae, Opilionida y Mecoptera (Fig. 1).

Un dendograma de similitud de Bray-Curtis muestra que las comunidades asociadas a las dos especies de muérdago son más similares entre ellas (con una similitud-cercana ai 80%) que con la comunidad asociada al pino; mientras que el índice de similitud de Sorensen mostró que existe una mayor similitud por parte de las comunidades asociada a P. hartwegii y A. vaginatum (0.8).

La planta que albergó una mayor riqueza de morfoespecies fue el P. hartwegii $(\mathrm{S}=40)$, seguido por A. vaginatum ($\mathrm{S}=35$)y yor último, A. globosum $\left(\mathrm{S}=30\right.$ por muestra). Respecto a ${ }^{\text {la }}$ abundancia, el que presentó la mayor fue A. vaginatum ($\mathrm{n}=535$), seguido de A. giobosim
(n $\mathrm{n}=407$), siendo la comunidad menos abundante la asociada al pino $(\mathrm{n}=143$). El pino fue el que presento el valor mayor de diversidad ($H^{\prime}=0.68$), seguido de A. vaginatum $\left(H^{\prime}=0.29\right)$ y A. En cuanto al efecto de la temporada, se observó un incremento en la riqueza para la mismo atributo para las tres comunidades en noviembre, lo que corresponde al final Los artrópodos de hábitos fitófagos (Prostigmata y Thysanoptera) constituyeron el grupo tuófico más abundante debido a los diversos recursos alimenticios presentes. El segundo grupo más abundante fue el de los descomponedores o detritivoros, ya que hay acumulación constante de materia orgánica en los diferentes micro hábitats estudiados.

Figura 1. Comparación de la abundancia de órdenes en las tres plantas estudiadas.

Discusión y Conclusiones

La comunidad de artrópodos asociada a P. hartwegii resultó con valores más altos en riqueza y diversidad, aunque una menor abundancia; es decir con una equitatividad mayor. Por otro lado, las comunidades asociadas a las dos especies de muérdago tuvieron una mayor abundancia, resultando en una menor equitatividad debido a la gran presencia de Prostigmata y Thysanoptera.

A pesar de que A. vaginatum y P. hartwegii comparten una mayor cantidad de especies, las comunidades asociadas a los dos muérdagos resultan más semejantes entre si considerando las abundancias que presentaron cada una.

Probablemente el factor más determinante para el establecimiento de diferentes grupos son los recursos alimentarios que ofrece cada planta hospedera (flores, frutos, conos, detrito y abundancia de presas).

Esto se lo atribuimos a la estrecha afinidad morfológica entre las dos especies de muérdagos, los cuales ofrecen condiciones y recursos similares, como son: el tipo de flor, las hojas reducidas a pequeñas escamas, que sirven de protección y alimento a la microfauna, y la baja captación de detrito por la ausencia de hojas que lo retengan. Por su parte, el pino ofrece Para los artrópodos una variedad de recursos, como: alimento en las acículas y conos, sitios seguros compuestos por las acículas y el establecimiento de diferentes morfoespecies por ia
captación de detrito, el cual es explotado por grupos de hábito saprófago propiciando la presencia de niveles superiores de la pirámide trófica.

La subclase Acari se encuentra abundantemente en las tres comunidades; se ve representada por tres grupos: Prostignata, Mesostigmata, y Oribatida. El primer grupo fue el més abundante en las tres comunidades estudiadas.

Uno de los órdenes con mayor presencia en los muérdagos fue Thysanoptera. La mayor abundancia fue reportada para A. vaginatum en el muestreo de mayo; esto se relaciona con la época de floración de la planta, la cual es aprovechada por los tisanópteros como recurso alimentario. Se encontraron cinco morfoespecies de tisanópteros asociados a A. globosum y A. vaginatum de las cuales tres pertenecen al mismo género, Frankliniella, representado por Frankliniella tolucensis (Watson 1941), Frankliniella fallaciosa (Priesner) y Frankliniella minuta (Moulton, 1907). Estos son nuevos registros para la localidad; existen dos especies nuevas por describir.

Los ejemplares pertenecientes al orden Coleoptera no fueron abundantes, de los cuales el 88% fueron larvas de diferentes formas, por lo que fueron agrupadas en una sola categoria. El resto del porcentaje se repartió entre tres morfoespecies de adultos, donde el más abundante pertenece a la familia Curculionidae con 8%.

Los homópteros en las tres plantas colectadas a través del muestreo fueron representados por 486 ejemplares, de los cuales el 92% se encontraban en estados inmaduros (instares). El resto del porcentaje se clasificó en cuatro morfoespecies correspondientes a estados maduros de las familias Cicadelidae, Cicadae, Aphidae y Membracidae.

Respecto a Hymenoptera, se colectó un total de seis morfoespecies pertenecientes a la familia Vespidae y a las siguientes subfamilias: Ceraphonidae, Platygastridae, Eulophidae, Chilsidoidea e Ichenmonidae, y un morfo para larvas. Este último fue el más abundante con 93%. Debida a la cantidad de larvas de coleópteros y dípteros, así como estados ninfales de homópteros, podría considerarse que dichas avispas son parasitoides de éstos, aunque tuvieron una baja frecuencia. Es necesario realizar más estudios sobre véspidos y la manera en que interactúan dentro de la comunidad.

Se identificaron 60 ejemplares pertenecientes al orden Lepidóptera, de los cuales el 92% fueron larvas y solamente se encontró un ejemplar adulto. Se tiene reportado que los muérdagos enanos (Viscaceae) son fuente directa de alimento para las larvas del genero Mitoura, que es un fitófago obligado (Hawksworth, y Wiens, 2002).

Para el orden Collembola se colectaron 321 ejemplares, identificando dos morfoespecies; estos presentaron una abundancia mucho mayor en la comunidad asociada a las acículas de pino y en el muestreo de septiembre, relacionado con la temporada de lluvia.

Se proponen a los muérdagos enanos como un grupo clave en el ecosistema montano, ya que favorecen el establecimiento de otros organismos, particularmente de artrópodos. Los resultados obtenidos constituyen una base para desarrollar futuras investigaciones sobre las interacciones ecológicas en el sistema biológico del pino, el muérdago enano y los artrópodos.

Literatura Citada

Davies, R. G. 1988. Outlines of Entomology. Chapman and Hall, Londres. 400 pp . Goulet, H. and J. Huber. 1993. Hymenoptera of the world: An Identification guide to tam Minister of Supply and Services, Otiawa. 668 pp .
TNEGI. 1981. Carta Estatal de climas escala 1:500 000. Anexo Cartográfico de la Sintesis

Geográfica del Estado de México.
Hawksworth, F. G., D Wiens, and B. W.Geils. 2002. Arcehthobium in North America. En Geils, B.W., J. Cibrián T. y B. Moody(eds.). Mistletoes of North American conifers. USDA Forest Service Gen.Tech, Repo,RNRS.GTR-98,PP. 2956
Musselman, L. J., and Press, M. C. 1995. Introduction to parasitic plants. Chapman and
Hall Hall.Reino Unido pp 141-176
Queijeiro-Bolaños, M. E. 2007. Interacciones entre dos especies de muérdago enano (Arceuthobium spp.) y Pinus hartwegii en el parque nacional Zoquiapan, Estado de México: el papel del disturbio. Tesis Profesional. Facultad de Ciencias, Universidad Autónoma de México, México. 50 pp .
Ross, H. H. 1991. A textbook of entomology. Krieger, Florida. pp. 224-228,
Schoonhoven, L. M., Van Loon, J. J. A, and M. Dicke. 2005. Insect-Plant Biology. Oxford University Press, New York. 441 pp.
Showalter, D. T. 2000. Insect Ecology, an ecosystem approach. Academic Press, San Diego. pp. 251-287.
Watson, D. M. 2001. Mistletoe-A keystone resource in Forest and Woodlands Worldwide. Annu.Rev. Ecol Syst. 32: 219-249.

